Synthesis of 2,4-Dideoxy-4-hydroxyphosphonoyl-d-erythro- and -L-threopentofuranoses

Tadashi Hanaya, ${ }^{a}$ Ayashi Noguchi, ${ }^{a}$ Margaret-Ann Armour, ${ }^{b}$ Alan M. Hogg ${ }^{\text {b }}$ and Hiroshi Yamamoto *a
${ }^{a}$ Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan
${ }^{\text {b }}$ Department of Chemistry, The University of Alberta, Edmonton, Alberta, T6G 2G2, Canada

Abstract

Treatment of $3,5,6$-trideoxy-1,2-O-isopropylidene-6-nitro- α-D-erythro-hex-5-enofuranose with dimethyl phosphonate in the presence of triethylamine, followed by catalytic hydrogenation and then deamination with nitrous acid, provided mainly a $2: 1$ mixture of 3,5 -dideoxy-5-dimethoxy-phosphinoyl-1,2-O-isopropylidene- $\alpha-\mathrm{D}$-ribo- and - β-L-lyxo-hexofuranose in 57% overall yield. This mixture was deacetonated, oxidized with sodium periodate, and then treated with acidic methanol to afford methyl 2,4-dideoxy-4-dimethoxyphosphinoyl- α, β-d-erythro-pentopyranosides (41% overall yield from the aforementioned phosphinoylfuranose) and -L-threo-pentopyranosides (17\% overall yield). The major products were reduced with sodium dihydrobis-(2-methoxyethoxy)aluminate, followed by hydrolysis with acid and then oxidation with hydrogen peroxide, to afford the title D-erythro compounds, whereas similar treatment of the minor pyranosides afforded the corresponding l-threo-pentofuranoses. These compounds were converted into the corresponding 1,3,5-tri-O-acetyl-5-methoxyphosphonoyl derivatives, whose structures and conformations [mostly ${ }^{3} T_{2}(\mathrm{D})$ for one and ${ }^{2} T_{3}(\mathrm{~L})$ for the other] were established by spectroscopy.

In view of the wide interest in their chemical and biochemical properties, various sugar analogues having a phosphorus atom in the hemiacetal ring ${ }^{1}$ have been prepared in recent years: e.g., analogues of D-glucopyranose 1^{2-4} and D-ribofuranose 2^{5-7} At the same time, other heteroatom-in-the-ring sugar analogues of the 2-deoxypentose type have drawn considerable interest from the viewpoint of their potential derivatization to nucleosides and nucleotides. For example, the preparation of methyl 2-deoxy-4-thio-D-erythro-pentofuranoside 3^{8} and the isolation of 1,2,4-trideoxy-1,4-imino-D-erythro-pentitol 4^{9} have been reported. We now describe our detailed study on the synthesis of hydroxyphosphonoyl-in-the-ring sugar analogues having a 2 -deoxy-D-ribofuranose structure. ${ }^{10}$

An addition reaction of dimethyl phosphonate to 3,5,6-

trideoxy-1,2-O-isopropylidene-6-nitro- α-D-erythro-hex-5-enofuranose 5^{11} proceeded smoothly at $25^{\circ} \mathrm{C}$ in the presence of triethylamine (TEA) to give a $66: 34$ mixture of the α-D-riboand β-L-lyxo-hexofuranose 6 in 94% yield (Scheme 1); these two compounds remained inseparable even upon repeated chromatography. The exact assignment of the configuration of the major and minor products, respectively, to D-ribo and L-lyxo was possible only after these compounds had been converted into their methyl pentopyranosides 16 and 17 (see later). Hydrogenation of compound 6 in methanol in the presence of platinum(IV) oxide afforded compound 7 which, on deamination with nitrous acid, provided a $2: 1$ mixture of the $3,5-$ dideoxy-D-ribo- and -L-lyxo-hexofuranose 8 (in 61% yield from 6), along with minor amounts of the dehydrated product 9 (12%), 6-chloro compounds $10(8 \%)$, and $6-O$-acetyl compounds 11 (7%) (Scheme 1). Compound 9 was derived from the chloride 10 by treatment with 1,8 -diazabicyclo[5.4.0]undec7 -ene (DBU), whereas compound 11 was converted into the corresponding alcohol 8 by treatment with sodium methoxide.
Attempted deacetonation of compound $\mathbf{8}$ by acid hydrolysis and then acetylation (for the purposes of confirmation of products) resulted in the formation of a considerable amount

Scheme 1 Reagents: i, $\mathrm{HP}(=\mathrm{O})(\mathrm{OMe})_{2}, \mathrm{TEA}$; ii, $\mathrm{H}_{2}, \mathrm{PtO}_{2}, \mathrm{HCl}$; iii, $\mathrm{NaNO}_{2}, \mathrm{AcOH}$

Scheme 2 Reagents: i, H^{+}; ii, $\mathrm{Ac}_{2} \mathrm{O}$, py
of a 1,6 -anhydro- β-D-ribo-hexofuranose derivative 13 (25%) besides the desired triacetates 12 (60%) (Scheme 2). The structure of the bicycle 13 was established by ${ }^{1} \mathrm{H}$ NMR and mass spectrometry. The axial $6-\mathrm{H}$ proton $\left(6-\mathrm{H}_{\mathrm{ax}}\right)$, which is transdiaxial to the 5 -phosphinoyl group ($J_{6 a x . P} 33.4 \mathrm{~Hz}$), shows an NOE enhancement with the $2-\mathrm{H}$ and $3-\mathrm{H}_{R}$ protons (see Experimental section). The presence of long-range coupling between $\mathrm{P}-5$ and $3-\mathrm{H}_{S}\left(J_{3 S . \mathrm{P}} 4.3 \mathrm{~Hz}\right)$ supports the D -ribo configuration of compound 13.
Alternatively, compounds 8 were first treated with acetic anhydride-sulfuric acid at $25^{\circ} \mathrm{C}$ for 4 h (to yield triacetates 12) and then with sodium methoxide in methanol, thus giving the D-erythro-hexofuranoses 14 in 91% yield (Scheme 3). Periodate oxidation of triol 14 gave the ($4 R S$)-3-O-formyl-D-glycero-pentopyranoses 15 which, upon treatment with methanol in the presence of an acidic ion-exchange resin followed by chromatographic separation, provided methyl 2,4-dideoxy-4-dimeth-oxyphosphinoyl-x-D-erythro-pentopyranoside (16a, 16% overall yield from 14), its β-anomer $16 \mathrm{~b}(29 \%$), the corresponding α-L-threo-pentopyranoside $17 \mathrm{a}(15 \%)$, and its β-anomer 17b (3.8%). Besides these four epimers, minor amounts of the following $3-O$-methyl derivatives were also obtained unexpectedly: 18a (2.2% from 14), 18b (4.8%), 19a (6.3%), and 19b (1.7%). Although these $3-O$-methyl products appear to be formed as the result of an acid-catalysed β-elimination of formate from compound 15 and subsequent addition of MeOH to the $\Delta^{3.4}$-pentose inermediate, the exact mechanism remains to be further studied.

The structural and conformational assignments of these eight compounds ($16-19 \mathrm{a}, \mathrm{b}$) were made on the basis of their NMR
data (see Experimental section). The presence of C-2phosphorus coupling (${ }^{3} J_{2 . \mathrm{P}} 10-13 \mathrm{~Hz}$) in the ${ }^{13} \mathrm{C}$ NMR spectra and of equatorial $2-\mathrm{H}\left(2-\mathrm{H}_{\mathrm{eq}}\right)$-phosphorus coupling ($J_{2 \text { eq. }} 4-6$ Hz) in the ${ }^{1} \mathrm{H}$ NMR spectra indicates that all of these compounds have conformations in which the dimethoxyphosphinoyl group is equatorial. The smaller magnitude of the $J_{3.4}{ }^{-}$ values ($2-3 \mathrm{~Hz}$) in compounds 16 and 18 implies the D-erpthro configuration with ${ }^{4} C_{1}(\mathrm{D})$ conformation. In contrast, the larger magnitude of $J_{3.4}(9-11 \mathrm{~Hz})$ for compounds 17 and 19 supports the L -threo configuration with ${ }^{1} C_{4}(\mathrm{~L})$ conformation. The anomeric orientation at $\mathrm{C}-1$ is readily perceived by the magnitude of $J_{1.2 \mathrm{ax}}$; namely, $3.4-4.3 \mathrm{~Hz}$ for 16-19a (x-anomers) and $7.9-8.5 \mathrm{~Hz}$ for $\mathbf{1 6 - 1 9 b}$ (β-anomers).

The major, x, β-D-erythro products $16 a, b$ were then reduced with sodium dihydrobis-(2-methoxyethoxy)aluminate (SDMA) to give the 4-phosphino derivative 20 which, by the action of hydrochloric acid in aq. propan-2-ol and then oxidation with hydrogen peroxide, afforded 2,4-dideoxy-4-hydroxyphos-phonoyl-D-erythro-pentofuranoses 21 (Scheme 3).

As the separation and purification of compound 21 was extremely difficult, unambiguous structural assignment was made by its conversion into the 4 -methoxyphosphonoyl triacetates 22 by treatment with acetic anhydride-pyridine and then ethereal diazomethane. After purification of the crude products by column chromatography on silica gel, the following four diastereoisomers were obtained, although some of the minor products were not completely separable (see Experimental section): 1,3,5-tri-O-acetyl-2,4-dideoxy-4-[(R)-methoxyphos-phonoyl]- β-d-erythro-pentofuranose 22a (6.1% overall yield from 16), its α-anomer 22b (3.9%), the corresponding $4-[(S)$ -methoxyphosphonoyl]- β-isomer 22c (7.5%), and its α-isomer 22d (5.2\%).

Similar treatment of the minor, α, β-L-threo products $17 \mathrm{a}, \mathrm{b}$ afforded 2,4-dideoxy-4-hydroxyphosphonoyl-L-threo-pentofuranoses 24 via 5-phosphino compounds 23 (Scheme 3). Compound 24 was also converted into 4-methoxyphosphonoyl triacetates 25: 1,3,5-tri- O-acetyl-2,4-dideoxy-4-[(R)-methoxyphosphonoyl]-x-L-threo-pentofuranose 25a (11\% from 17), its β-anomer 25b (5.4%), the corresponding $4-[(S)$ -

Scheme 3 Reagents: i, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}$: ii, NaOMe ; iii, NaIO_{4}; iv. MeOH. Amberlite (H^{+}); v, SDMA: vi. H^{+}: vii. $\mathrm{H}_{2} \mathrm{O}_{2}$: viii. $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}$: ix. $\mathrm{CH}_{2} \mathrm{~N}_{2}$

methoxyphosphonoyl]-x-isomer 25c (4.8\%), and its β-anomer 25d (2.4%).

The molecular composition of compounds 22a-d and 25a-d was confirmed by their EI, high-resolution mass spectra, most of which gave the $(M+1)$ ions at $m / z 322$ corresponding to $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{8} \mathrm{P}$. As the C-4 configuration of compounds 22a-d (D-erythro) and 25a-d (L-threo) is maintained during the transformation from substrates $16 \mathbf{a}, \mathbf{b}$ and $17 \mathbf{a}, \mathbf{b}$, the favoured conformations of the furanoid ring, the anomeric orientation of $\mathrm{C}-1$, and the orientation of the ring $\mathrm{P}=\mathrm{O}$ group of these triacetates are established by analysis of their $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra; see Table 1 for the assignments of all signals.

Compounds 22b-d have large $J_{2, \mathrm{p}}$-values ($27-29 \mathrm{~Hz}$) and small $J_{3 . \mathrm{P}}$-values $(5-6 \mathrm{~Hz})$ and thus are considered to exist predominantly in the ${ }^{3} T_{2}$ conformation. The relatively large $J_{2^{\prime} \cdot 3^{-}}$and $J_{3.4^{-}}$-values ($8-10 \mathrm{~Hz}$) of these compounds further support the above conformation. In contrast, compounds 25a-d have small $J_{2 . \mathrm{P}}$-values ($2-8 \mathrm{~Hz}$) and large values for $J_{3, \mathrm{P}}(25-32$ $\mathrm{Hz})$ and $J_{2 \cdot \mathrm{P}}(26-32 \mathrm{~Hz})$, therefore existing predominantly in the ${ }^{2} T_{3}$ conformation; the relatively small $J_{2^{\prime}, 3^{-}}$-values ($2-4 \mathrm{~Hz}$) support this conformation. Compound 22a has appreciably close $J_{2 . \mathrm{P}}(19 \mathrm{~Hz})$ and $J_{3 . \mathrm{P}}(11 \mathrm{~Hz})$-values compared with those of its stereoisomers $\mathbf{2 2 b} \mathbf{b - d}$. This suggests an averaging between the interconverting ${ }^{3} T_{2}$ and ${ }^{2} T_{3}$ conformations with a slight tendency towards ${ }^{3} T_{2}$ form (ca. 3:2), judging from the magnitudes of the corresponding J-values.

The presence of a small, long-range, W-coupling ($J_{1.4} 0.5 \mathrm{~Hz}$) observed for species 22a, \mathbf{c} and $\mathbf{2 5 b}$, \mathbf{d} indicates, respectively, the β-D- and β-L-configuration for $1-\mathrm{H}$ of these compounds. The orientation of the ring $\mathrm{P}=\mathrm{O}$ group was established by examination of the δ-values of $3-\mathrm{H}$ for compounds $22 \mathrm{a}-\mathrm{d}$ and of 2-H for 25a-d. Namely, a slight downfield shift of the 3-H signals was observed for compounds $22 a$ and 22 b compared with those of the respective anomers 22c and 22d, thus showing nearly a 1,3 -diaxial proximity of the $\mathrm{P}=\mathrm{O}$ group to $3-\mathrm{H}$ in the case of isomers 22a and 22b \{i.e., both possess a $4-\left[\left(R_{\mathrm{P}}\right)\right]$ configuration $\}$. A similar downfield shift indicative of the same configuration of the ring phosphorus was observed for the $2-\mathrm{H}$ signals of isomers $\mathbf{2 5 a}$ and $\mathbf{2 5 b}$ (in comparison with those of the corresponding diastereoisomers $\mathbf{2 5 c}$ and $\mathbf{2 5 d}$).

The rest of the spectral data of compounds 22a-d and 25a-d are completely in conformity with the structures shown. It has often been rather difficult ${ }^{2.3 .5}$ to determine the exact configurations of methoxyphosphonoyl sugar analogues compared with the case of the corresponding alkyl- or arylphosphonoyl congeners. ${ }^{1,4.6 .7}$ Therefore, a complete set of the present data summarized in Table 1 is of high value in the structural analysis of related 2,4-dideoxy-4-phosphonoylpentofuranoses, some of which are currently being prepared.

Experimental

M.p.s were determined with a Yanagimoto MP-S3 instrument and are uncorrected. All reactions were monitored by TLC
(Merck silica gel 60F, 0.25 mm) with an appropriate solvent system [AcOEt (Solvent A); (19:1) AcOEt:EtOH (Solvent B); (19:1) $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (Solvent C); and (5:3:1) propan-2-ol-AcOEt-water (Solvent D)]; components were detected by spraying of the plates with 20% sulfuric acid-ethanol, with subsequent heating. Column chromatography was performed by Wako C-200 silica gel. The NMR spectra were measured in CDCl_{3} with Varian VXR-500 $\left(500 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 126 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) and VXR-200 (81 MHz for ${ }^{31} \mathrm{P}$) instruments (the SC-NMR Lab., Okayama Univ.) at $21^{\circ} \mathrm{C}$, unless otherwise stated. Chemical shifts are reported as $\dot{\delta}$-values relative to tetramethylsilane (internal standard for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) and 85% phosphoric acid (external standard for ${ }^{31} \mathrm{P}$). J Values are given in Hz . The assignments of all signals were made by employing a first-order analysis with the aid of decoupling techniques and, if necessary, 2D COSY and NOEDS measurements. The mass spectra were taken on an A.E.I. MS 50 ultra-high-resolution instrument and were given in terms of m / z (relative intensity) compared with the base peak.

3,5,6-Trideo.xy-5-dimethoxyphosphinoyl-1,2-O-isopropyl-

 idene-6-nitro- x-D-ribo- and - β-L-lyxo-hexofuranose 6.-TEA $\left(0.60 \mathrm{~cm}^{3}, 4.3 \mathrm{mmol}\right)$ was added dropwise at $0^{\circ} \mathrm{C}$ to a mixture of compound $5^{11}(3.00 \mathrm{~g}, 13.9 \mathrm{mmol})$ and dimethyl phosphonate ($15.0 \mathrm{~g}, 136 \mathrm{mmol}$), and the mixture was stirred for 1 h at $25^{\circ} \mathrm{C}$. The excess of phosphonate was distilled off at $\sim 40^{\circ} \mathrm{C}$ (0.2 Torr). The residue was purified on a column of silica gel with AcOEt-hexane as eluent, giving an inseparable mixture of the hexofuranoses 6 (ribo:lyxo $66: 34$) as a syrup ($4.22 \mathrm{~g}, 94 \%$), the ratio being determined by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy [Found: C, 40.4; H, 6.1; N, $4.0 \% ;\left(\mathbf{M}^{+}-\mathrm{CH}_{3}\right), 310.0690$. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{8} \mathrm{P}$ requires $\mathrm{C}, 40.62 ; \mathrm{H}, 6.20 ; \mathrm{N}, 4.31 \% ;(\mathrm{M}-15)$, $310.0692] ; R_{\mathrm{f}} 0.37$ (Solvent A); δ_{H} for ribo-6 1.30 and 1.50 (3 H , each, $2 \times \mathrm{s}, \mathrm{CMe}_{2}$), $1.73\left(1 \mathrm{H}, \mathrm{ddd}, J_{3 R .3 S} 13.7, J_{3 R .4} 10.7\right.$, $\left.J_{2,3 R} 4.9,3-\mathrm{H}_{R}\right), 2.37\left(1 \mathrm{H}, \mathrm{dd}, J_{35.4} 4.4, J_{2.3 \mathrm{~s}} \sim 0,3-\mathrm{H}_{\mathrm{S}}\right), 3.04$ $\left(1 \mathrm{H}, \mathrm{ddt}, J_{5, \mathrm{P}} 21.1, J_{4,5} 8.2, J_{5.6} \cdot 6.2, J_{5.6} 6.0,5-\mathrm{H}\right), 3.77$ and 3.78 [3 H each, $2 \times \mathrm{d}, J_{\text {Pоме }} 10.7$ and $10.9, \mathrm{P}(\mathrm{OMe})_{2}$], $4.40(1 \mathrm{H}$, dddd, $\left.J_{4 . \mathrm{P}} 6.6,4-\mathrm{H}\right), 4.64\left(1 \mathrm{H}, \mathrm{td}, J_{6.6^{\prime}} \cdot 14.6, J_{6^{\prime} . \mathrm{P}} 14.3,6-\mathrm{H}^{\prime}\right), 4.73$ $\left(1 \mathrm{H}\right.$, ddd, $\left.J_{6 . \mathrm{P}} 16.0,6-\mathrm{H}\right), 4.74\left(1 \mathrm{H}\right.$, dd, $\left.J_{1.2} 3.8,2-\mathrm{H}\right)$ and 5.76 $(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}) ; \delta_{\mathrm{C}}$ for ribo-6 26.01 and $26.61\left(\mathrm{CMe}_{2}\right), 38.49$ (${ }^{3} J_{3 . \mathrm{P}} 3.5, \mathrm{C}-3$), $39.84\left({ }^{1} J_{5 . \mathrm{P}} 141.2, \mathrm{C}-5\right), 53.05$ and $53.38\left({ }^{2} J_{\mathrm{C} . \mathrm{P}}\right.$ 6.9 and $6.3, \mathrm{MeOP}$), 71.89 (C-6), 74.16 (C-4), 80.41 (C-2), 104.87 (C-1) and $111.53\left(\mathrm{Me}_{2} C\right)$; δ_{P} for ribo-6 25.0; δ_{H} for l!:xo-6 1.30 and $1.49\left(3 \mathrm{H}\right.$ each, $2 \times \mathrm{s}, \mathrm{CMe}_{2}$), $2.07\left(1 \mathrm{H}\right.$, ddd, $J_{3 R .3 S}$ $\left.13.5, J_{3 R .4} 10.9, J_{2.3 R} 4.8,3-\mathrm{H}_{R}\right), 2.17\left(1 \mathrm{H}, \mathrm{dd}, J_{35.4} 4.6, J_{2.3 \mathrm{~s}}\right.$ $\left.\sim 0,3-\mathrm{H}_{S}\right), 3.33\left(1 \mathrm{H}\right.$, dddd, $J_{5 . \mathrm{P}} 23.1, J_{5.6}, 7.3, J_{5.6} 5.9, J_{4.5} 3.5$, $5-\mathrm{H}), 3.76$ and 3.78 [3 H each, $2 \mathrm{~d}, J_{\text {POMe }} 10.8, \mathrm{P}(\mathrm{OMe})_{2}$], 4.52 $\left(1 \mathrm{H}\right.$, dddd, $\left.J_{4 . \mathrm{P}} 16.3,4-\mathrm{H}\right), 4.60\left(1 \mathrm{H}\right.$, ddd, $J_{6.6^{\prime}} \cdot 14.1, J_{6^{\prime} . \mathrm{P}} 10.6$, $\left.6-\mathrm{H}^{\prime}\right), 4.61\left(1 \mathrm{H}\right.$, ddd, $\left.J_{6 . \mathrm{P}} 10.8,6-\mathrm{H}\right), 4.75\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 3.6\right.$, $2-\mathrm{H})$ and $5.78(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}) ; \dot{\delta}_{\mathrm{C}}$ for $l \mathrm{l}$ xo-6 26.05 and 26.68 ($\mathrm{Me}_{2} \mathrm{C}$), $35.49(\mathrm{C}-3), 38.05$ ($\left.{ }^{1} J_{5 . \mathrm{P}} 140.7, \mathrm{C}-5\right), 52.73$ and 53.33 (${ }^{2} J_{\mathrm{C} . \mathrm{P}} 6.4$ and 6.3, MeOP), 71.70 (C-6), 74.81 (C-4), 80.33 (C-2), $105.20(\mathrm{C}-1)$ and $111.72\left(\mathrm{Me}_{2} \mathrm{C}\right)$; $\dot{\delta}_{\mathrm{P}}$ for $l \mathrm{y}$:xo-6 24.4; $m /=310$Table $1{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR parameters for compounds $\mathbf{2 2 a}$ - \mathbf{d} and $\mathbf{2 5 a} \mathbf{a}$ in CDCl_{3}

Compound	Chemical shifts (δ)									
	1-H	2-H	2-H'	3-H	4-H	5-H	5-H	POMe	1-, 3-, and 5-OAc ${ }^{\text {a }}$	${ }^{31} \mathrm{P}$
22a	5.07	2.45	$2.13{ }^{\text {b }}$	5.28	2.39	4.39	4.28	3.87	2.16, 2.07, 2.07	56.5
22b	5.03	2.73	1.95	5.13	2.44	4.35	4.35	3.83	2.13, 2.07, 2.06	55.2
22c	5.12	2.42	2.18	5.20	2.50	4.31	4.22	3.79	2.12, 2.08, 2.07	54.0
22d	4.82	2.69	$2.05{ }^{\text {b }}$	4.98	2.59	4.33	4.24	3.88	2.17, 2.08, 2.07	52.2
25a	4.66	$2.14{ }^{\text {b }}$	2.60	5.52	2.59	4.34	4.21	3.91	2.18, 2.07, 2.04	54.3
25b	4.93	2.24	2.49	5.38	2.55	4.36	4.26	3.79	2.10, 2.07, 2.06	60.5
25c	5.15	1.96	2.62	5.48	2.52	4.37	4.32	3.83	2.12, 2.11, 2.05	54.9
25d	4.96	$2.14{ }^{\text {b }}$	2.51	5.31	2.41	4.43	4.38	3.88	2.14, 2.11, 2.05	60.5

Coupling constants (Hz)

Compound	$J_{1.2}$	$J_{1.2}$.	$J_{1.4}$	$J_{1 . \mathrm{P}}$	$J_{2.3}$	$J_{2, \mathrm{P}}$	$J_{2,2^{\prime}}$	$J_{2^{\prime}, 3}$	$J_{2^{\prime}, \mathrm{P}}$	$J_{3.4}$	$J_{3 . \mathrm{P}}$	$J_{4.5}$	$J_{4.5}$	$J_{4 . \mathrm{P}}$	$J_{\text {S. } \mathrm{P}}$	$J_{5^{\prime} \text {, }}$	$J_{5.5}$	${ }^{3} J_{\text {POMe }}$
22a	5.0	7.2	0.5	4.9	5.3	19.0	14.3	7.1	c	7.4	10.6	7.0	7.8	16.3	9.9	13.8	11.7	11.2
22b	5.1	7.2	0	7.0	6.9	28.7	14.2	7.9	7.0	8.0	5.9	7.3	7.3	17.0	12.7	12.7		10.9
22c	3.3	4.9	0.5	5.8	5.6	27.1	14.4	9.6	7.4	8.4	5.3	7.4	7.9	16.4	16.4	8.8	11.3	10.8
22d	5.0	8.8	0	8.8	6.5	28.1	14.0	8.5	c	9.3	5.3	7.2	7.6	15.8	15.8	8.8	11.4	10.9
25a	10.9	8.6	0	4.9	3.4	c	14.4	2.6	31.7	5.0	30.7	9.5	6.0	18.4	9.2	4.9	11.3	11.2
25b	6.9	1.6	0.5	2.8	3.4	2.4	16.1	2.3	26.6	5.0	32.2	8.6	6.6	17.5	11.1	5.2	11.2	11.0
25c	8.8	7.8	0	5.8	4.3	8.3	14.4	4.2	25.7	5.0	25.4	7.8	8.3	15.9	8.7	13.1	11.3	10.8
25d	7.8	2.1	0.5	2.7	3.6	c	15.5	3.4	26.2	5.1	29.5	6.6	8.2	16.4	7.8	8.6	11.4	10.8

${ }^{a}$ Acetoxy assignments may have to be interchanged. ${ }^{b}$ Chemical shifts were confirmed by 2D COSY experiments in spite of the presence of overlapping acetoxy signals. ${ }^{c}$ Values are uncertain because of overlap with acetoxy signals.
$\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 61 \%\right), 268$ (100), 250 (19), 221 (15), 210 (10), 203
(25), 191 (6.6), 165 (15), 149 (47), 137 (57) and 109 (45).

3,5-Dideoxy-5-dimethoxyphosphinoyl-1,2-O-isopropylidene- α -D-ribo-and - β-L-lyxo-hexofuranose 8, 6-Chloro-6-deoxy Derivatives 10. 6-O-Acetyl Derivatives 11, and 3,5,6-Trideoxy-5-dimethoxyphosphinoyl-1,2-O-isopropylidene- α-D-erythro-hex-5enofuranose 9.-Compounds $6(3.78 \mathrm{~g}, 11.6 \mathrm{mmol})$ dissolved in a mixture of methanol $\left(100 \mathrm{~cm}^{3}\right)$ and $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid $\left(5.80 \mathrm{~cm}^{3}, 11.6 \mathrm{mmol}\right)$ were hydrogenolysed in the presence of platinum(iv) oxide ($670 \mathrm{mg}, 2.95 \mathrm{~mol}$) at $25^{\circ} \mathrm{C}$ under an atmospheric pressure of H_{2}. After 16 h , the catalyst was filtered off, and the filtrate was evaporated under reduced pressure to give the 6 -aminohexofuranose hydrochloride derivative 7 as a syrup; $R_{\mathrm{f}} 0.39$ (Solvent D).

To a stirred solution of the amine 7 in water $\left(35 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ were added acetic acid ($3.0 \mathrm{~cm}^{3}, 52.4 \mathrm{mmol}$) and then sodium nitrite $(4.60 \mathrm{~g}, 66.7 \mathrm{mmol})$. After 2 h , the mixture was extracted twice with CHCl_{3}. The combined organic layers were washed successively with aq. NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure. The residue was separated by column chromatography, giving three fractions, A-C.
Fraction A [$R_{\mathrm{f}} 0.42$ (Solvent B)] gave a syrup (680 mg) which consisted of the hexenofuranose $9(12 \%$ from 6) [Found: $\quad\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), \quad 263.0686 . \quad \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{P}$ requires ($\mathrm{M}-15$), 263.0685] and the chloride $10(8 \%$, ribo:lyxo $\sim 3: 1)$ [Found: $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 301.0423$ and 299.0447. $\mathrm{C}_{10} \mathrm{H}_{1}{ }_{7} \mathrm{ClO}_{6} \mathrm{P}$ requires $(M-15), 301.0422$ and 299.0451], the relative amounts of products 9 and 10 being determined by the intensity ratio of their $1-\mathrm{H}$ signals; δ_{H} for 91.32 and $1.52(3 \mathrm{H}$ each, $2 \times \mathrm{s}, \mathrm{CMe}_{2}$), $1.74\left(1 \mathrm{H}\right.$, ddd, $J_{3 R .3 S} 13.5, J_{3 R .4} 10.9, J_{2.3 R} 4.7$, $3-\mathrm{H}_{R}$), $2.39\left(1 \mathrm{H}, \mathrm{dd}, J_{35.4} 4.5, J_{2.35} \sim 0,3-\mathrm{H}_{5}\right), 3.73[6 \mathrm{H}, \mathrm{d}$, $\left.J_{\text {POMe }} 10.9, \mathrm{P}(\mathrm{OMe})_{2}\right], 4.76\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 3.6,2-\mathrm{H}\right), 4.79(1 \mathrm{H}$, $\left.\mathrm{tdt}, J_{4 . \mathrm{P}} 9.2, J_{4.6(\mathrm{E})}=J_{4.6(\mathrm{Z})} 1.5,4-\mathrm{H}\right), 5.88(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 6.12$ $\left[1 \mathrm{H}, \mathrm{dt}, J_{6(Z) . \mathrm{P}} 22.6, J_{6(Z) .6(E)} 1.6,6-\mathrm{H}(Z)\right]$ and $6.19[1 \mathrm{H}, \mathrm{dt}$, $\left.J_{6(E), \mathrm{P}} 45.9,6-\mathrm{H}(E)\right] ; \delta_{\mathrm{P}}$ for $918.0 ; \mathrm{m} / \mathrm{z} 263\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, 48%), 221 (100), 203 (32), 191 (7), 175 (15), 163 (47), 137 (29) and $109(22) ; \delta_{\mathrm{H}}$ for ribo-10 1.29 and 1.51 (3 H each, $2 \times \mathrm{s}$, CMe_{2}), $1.89\left(1 \mathrm{H}, \mathrm{ddd}, J_{3 R .3 S} 13.6, J_{3 R .4} 11.0, J_{2.3 R} 4.7,3-\mathrm{H}_{R}\right.$), $2.26\left(1 \mathrm{H}, \mathrm{dd}, J_{3 \mathrm{S.} .4} 4.3, J_{2.35} \sim 0,3-\mathrm{H}_{s}\right), 2.42\left(1 \mathrm{H}, \mathrm{ddt}, J_{5 . \mathrm{P}} 22.0\right.$,
$\left.J_{4.5} 8.0, J_{5.6^{6}} 4.8, J_{5.6} 4.1,5-\mathrm{H}\right), 3.75$ and $3.79[3 \mathrm{H}$ each, $2 \times \mathrm{d}$, $J_{\text {POMe }} 10.9$ and $\left.10.7, \mathrm{P}(\mathrm{OMe})_{2}\right], 3.87\left(1 \mathrm{H}, \mathrm{td}, J_{6.6} \cdot 11.5, J_{6^{\prime} \cdot \mathrm{P}} 10.5\right.$, $\left.6-\mathrm{H}^{\prime}\right), 3.95\left(1 \mathrm{H}\right.$, ddd, $\left.J_{6 . \mathrm{P}} 24.9,6-\mathrm{H}\right), 4.57\left(1 \mathrm{H}, \mathrm{dtd}, J_{4 . \mathrm{P}} 8.9,4-\right.$ H), $4.74\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 3.6,2-\mathrm{H}\right)$ and $5.78(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}) ; \delta_{\mathrm{P}}$ for ribo10 26.6; δ_{P} for lyxo-10 25.7; $m / z 301\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 10 \%\right), 299$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 28\right), 257$ (55) and 239 (14).

Fraction B [$R_{\mathrm{f}} 0.31$ (Solvent B)] gave 6-O-acetyl compounds 11 (ribo:lyxo $2: 1$) as a syrup ($275 \mathrm{mg}, 7 \%$) [Found: $(\mathrm{M}+1)^{+}$, 339.1224. $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{8} \mathrm{P}$ requires $(\mathrm{M}+1)$, 339.1209]; δ_{H} for ribo-11 1.31 and $1.50\left(3 \mathrm{H}\right.$ each, $\left.2 \times \mathrm{s}, \mathrm{CMe}_{2}\right), 1.87(1 \mathrm{H}$, ddd, $\left.J_{3 R .3 S} 13.5, J_{3 R .4} 11.0, J_{2.3 R} 4.8,3-\mathrm{H}_{R}\right), 2.05(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{OAc})$, $2.24\left(1 \mathrm{H}, \mathrm{dd}, J_{3 S .4} 4.2, J_{2.35} \sim 0,3-\mathrm{H}_{S}\right), 2.38\left(1 \mathrm{H}, \mathrm{ddt}, J_{5 . \mathrm{P}}\right.$ $\left.21.7, J_{4.5} 7.1, J_{5.6} .5 .2, J_{5.6} 4.9,5-\mathrm{H}\right), 3.75$ and $3.77[3 \mathrm{H}$ each, $\left.2 \times \mathrm{d}, J_{\text {POMe }} 10.9, \mathrm{P}(\mathrm{OMe})_{2}\right], 4.39\left(1 \mathrm{H}\right.$, ddd, $J_{6^{\prime} \cdot \mathrm{P}} 13.9, J_{6.6}$ $\left.11.5,6-\mathrm{H}^{\prime}\right), 4.43\left(1 \mathrm{H}\right.$, ddd, $\left.J_{6 . \mathrm{P}} 19.6,6-\mathrm{H}\right), 4.47\left(1 \mathrm{H}, \mathrm{tdd}, J_{4 . \mathrm{P}}\right.$ $10.0,4-\mathrm{H}), 4.73\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 3.6,2-\mathrm{H}\right)$ and $5.78(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H})$; δ_{P} for ribo-11 27.3; δ_{H} for ly:xo-11 1.31 and $1.50(3 \mathrm{H}$ each, $\left.2 \times \mathrm{s}, \mathrm{CMe}_{2}\right), 2.13-2.15\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\text {R.S }}\right), 2.55\left(1 \mathrm{H}, \mathrm{ddd}, J_{5 . \mathrm{P}}\right.$ $\left.22.2, J_{5.6}, 7.6, J_{5.6} 5.0, J_{4.5} 3.9,5-\mathrm{H}\right), 3.74$ and $3.76[3 \mathrm{H}$ each, $\left.2 \times \mathrm{d}, J_{\text {РОме }} 10.8, \mathrm{P}(\mathrm{OMe})_{2}\right], 4.28\left(1 \mathrm{H}, \mathrm{td}, J_{6.6^{\prime}}=J_{6^{\prime} \cdot \mathrm{P}}=11.3\right.$, $\left.6-\mathrm{H}^{\prime}\right), 4.40(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.53\left(1 \mathrm{H}\right.$, dddd, $J_{4 . \mathrm{P}} 18.4, J_{3 \mathrm{R} .4} 9.0$, $\left.J_{3 S .4} 7.0,4-\mathrm{H}\right), 4.73\left(1 \mathrm{H}, \mathrm{dd}, J_{2.3 R} 4.8, J_{1.2} 3.7, J_{2.3 S} \sim 0,2-\mathrm{H}\right)$ and $5.82(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H})$; $\delta_{\mathbf{P}}$ for lyyxo-11 26.7; m/z $339\left(\mathrm{M}^{+}+1\right.$, 18%), 323 (100), 281 (90), 263 (11), 239 (53), 221 (54), 203 (31), 191 (14), 179 (12), 137 (64), and 109 (31).
Fraction C $\left[R_{\mathrm{f}} 0.20\right.$ (Solvent B)] gave a $2: 1$ mixture of the hexofuranoses $\mathbf{8}$ as a $\operatorname{syrup}(2.11 \mathrm{~g}, 61 \%)$ [Found: C, $45.0 ; \mathrm{H}$, $7.4 \% ;(\mathrm{M}+1)^{+}$, 297.1108. $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{7} \mathrm{P}$ requires $\mathrm{C}, 44.60 ; \mathrm{H}$, $7.14 \% ;(\mathrm{M}+1), 297.1103] ; \delta_{\mathrm{H}}$ for ribo-8 1.31 and 1.51 (3 H each, $\left.2 \times \mathrm{s}, \mathrm{CMe}_{2}\right), 1.73\left(1 \mathrm{H}, \mathrm{ddd}, J_{3 R .3 S} 13.7, J_{3 R .4} 10.8, J_{2.3 R} 4.8,3-\right.$ $\left.\mathrm{H}_{R}\right), 2.20\left(1 \mathrm{H}, \mathrm{ddt}, J_{5 . \mathrm{P}} 20.3, J_{4.5} 9.0, J_{5.6} 5.7, J_{5.6}, 5.5,5-\mathrm{H}\right), 2.30$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.34\left(1 \mathrm{H}, \mathrm{dd}, J_{35,4} 4.3, J_{2.35} \sim 0,3-\mathrm{H}_{\mathrm{s}}\right), 3.76$ and 3.78 [3 H each, $2 \times \mathrm{d}, J_{\text {Pome }} 10.8$ and $\left.10.9, \mathrm{P}(\mathrm{OMe})_{2}\right], 3.98(1 \mathrm{H}$, ddd, $\left.J_{6^{\prime} \cdot \mathrm{P}} 17.2, J_{6.6^{6}} \cdot 11.7,6-\mathrm{H}^{\prime}\right), 4.00\left(1 \mathrm{H}\right.$, ddd, $\left.J_{6 . \mathrm{P}} 15.8,6-\mathrm{H}\right)$, $4.40\left(1 \mathrm{H}\right.$, dddd, $\left.J_{4 . \mathrm{P}} 6.1,4-\mathrm{H}\right), 4.73\left(1 \mathrm{H}\right.$, dd, $\left.J_{1.2} 3.6,2-\mathrm{H}\right)$ and $5.79(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}) ; \delta_{\mathrm{P}}$ for ribo-8 28.7; δ_{H} for $l_{1} \cdot x o-81.31$ and 1.51 (3 H , each, $2 \times \mathrm{s}, \mathrm{CMe}_{2}$), $1.92\left(1 \mathrm{H}\right.$, ddd, $J_{3 \mathrm{R} .3 \mathrm{~s}} 13.6, J_{3 R .4} 11.1$, $\left.J_{2.3 R} 4.7,3-\mathrm{H}_{R}\right), 2.20\left(1 \mathrm{H}, \mathrm{dd}, J_{3 S .4} 4.8, J_{2.3 S} \sim 0,3-\mathrm{H}_{S}\right), 2.30$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) 2.46\left(1 \mathrm{H}, \mathrm{dq}, J_{5 . \mathrm{P}} 21.4, J_{4.5} 5.7, J_{5.6} 5.6, J_{5.6} 5.0\right.$, $5-\mathrm{H}), 3.77$ and $3.79\left[3 \mathrm{H}\right.$, each, $2 \times \mathrm{d}, J_{\text {POMe }} 11.1$ and 11.0 ,
$\mathrm{P}(\mathrm{OMe})_{2}$], $3.90\left(1 \mathrm{H}\right.$, ddd, $\left.J_{6 \cdot \mathrm{P}} 18.2, J_{6.6} \cdot 11.7,6-\mathrm{H}^{\prime}\right), 3.92(1 \mathrm{H}$, ddd, $\left.J_{6 . \mathrm{P}} 15.3,6-\mathrm{H}\right), 4.55\left(1 \mathrm{H}, \mathrm{tt}, J_{4, \mathrm{P}} 10.1,4-\mathrm{H}\right), 4.75(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1.2} 3.7,2-\mathrm{H}\right)$ and $5.82(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}) ; \delta_{\mathrm{P}}$ for lyxo-8 29.0; m/z 297 $\left(\mathbf{M}^{+}+1,2.6 \%\right), 281(85), 239(100), 221$ (25), 209 (17), 191 (23), 179 (17), 153 (32), 137 (29) and 109 (27).

Dehydrochlorination of Compound 10 .-To a solution of compound 10 ($350 \mathrm{mg}, 1.11 \mathrm{mmol}$) and the hexenofuranose 9 $(460 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added DBU $\left(0.20 \mathrm{~cm}^{3}, 1.3 \mathrm{mmol}\right)$. The mixture was stirred for 2 h at $25^{\circ} \mathrm{C}$, and then concentrated under reduced pressure. The residue was purified by column chromatography to give the hexenofuranose $9(745 \mathrm{mg}, 92 \%)$ as a syrup.

Deacetylation of 6-Acetate 11 .-To a solution of the acetate $11(120 \mathrm{mg}, 0.355 \mathrm{mmol})$ in abs. methanol $\left(1.0 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added a 25% methanolic solution of $\mathrm{NaOMe}\left(0.010 \mathrm{~cm}^{3}\right.$, 0.044 mmol), and the mixture was stirred for 30 min before being neutralized with Amberlite IR-120 (H^{+}). The resin was filtered off and washed with MeOH . The combined filtrate and washings were evaporated under reduced pressure. The residue was purified by column chromatography to give compounds 8 (ribo:ly, xo $2: 1$) ($96.0 \mathrm{mg}, 91 \%$).

Acid Hydrolysis and Acetylation of Compounds 8.-Compounds 8 ($55 \mathrm{mg}, 0.19 \mathrm{mmol}$) were dissolved in a mixture of propan-2-ol $\left(0.2 \mathrm{~cm}^{3}\right)$ and $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid $\left(1.8 \mathrm{~cm}^{3}\right)$, and the mixture was then refluxed for 2 h . The reactants were neutralized with Amberlite IRA-45. The resin was filtered off and the filtrate was evaporated under reduced pressure. The residue was acetylated with acetic anhydride ($0.5 \mathrm{~cm}^{3}$) and dry pyridine ($1.0 \mathrm{~cm}^{3}$), worked up, and separated by column chromatography into two fractions.

The faster eluting fraction [$R_{\mathrm{f}} 0.34$ (Solvent B)] gave ($5 R S$)-1,2,6-tri- O-acetyl-3,5-dideoxy-5-dimethoxyphosphinoyl- α, β-D-erythro-hexofuranoses 12 as a syrup ($44 \mathrm{mg}, 60 \%$); δ_{H} for the predominant component (presumably $1,2,6$-tri- O-acetyl-3,5-dideoxy-5-dimethoxyphosphinoyl- β-D-ribo-hexofuranose) 2.05, 2.07 and $2.08(3 \mathrm{H}$ each, $3 \times \mathrm{s}, \mathrm{AcO}), 2.26\left(1 \mathrm{H}, \mathrm{dd}, J_{3 R, 3 \mathrm{~S}}\right.$ $\left.14.5, J_{3 S .4} 6.1,3-\mathrm{H}_{S}\right), 2.32\left(1 \mathrm{H}\right.$, ddd, $\left.J_{3 R, 4} 9.7, J_{2.3 R} 4.4,3-\mathrm{H}_{R}\right)$, $2.33\left(1 \mathrm{H}, \mathrm{ddt}, J_{5, \mathrm{P}} 21.8, J_{4,5} 9.7, J_{5,6}=J_{5.6^{\prime}}=4.8,5-\mathrm{H}\right), 3.77[6$ $\left.\mathrm{H}, \mathrm{d}, J_{\mathrm{POMe}} 10.9, \mathrm{P}(\mathrm{OMe})_{2}\right], 4.35-4.42\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 4.70(1 \mathrm{H}$, $\left.\mathrm{tt}, J_{4 . \mathrm{P}} 6.4,4-\mathrm{H}\right), 5.15\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 0.8,2-\mathrm{H}\right)$ and $6.12(1 \mathrm{H}, \mathrm{d}$, 1-H).

The slower eluting fraction $\left[R_{\mathrm{f}} 0.25\right.$ (Solvent B)] gave 2 -O-acetyl-1,6-anhydro-3,5-dideoxy-5-dimethoxyphosphinoyl- β-D-ribo-hexofuranose 13 as a syrup ($13 \mathrm{mg}, 25 \%$) [Found: C, 43.2; $\mathrm{H}, 6.45 \% ; \mathrm{M}^{+}, 280.0723 . \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{7} \mathrm{P}$ requires $\mathrm{C}, 42.86 ; \mathrm{H}$, $6.11 \% ; \mathrm{M}, 280.0712] ; \delta_{\mathrm{H}} 1.77\left(1 \mathrm{H}\right.$, br dd, $J_{5 . \mathrm{P}} 19.9, J_{5.6 \mathrm{ax}} 5.0$, $\left.J_{5.6 \mathrm{eq}} 1.0, J_{4.5} 0.5,5-\mathrm{H}\right), 2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.15(1 \mathrm{H}$, dddd, $\left.J_{3 R, 3 S} 14.2, J_{3 S .4} 6.9, J_{3 S, \mathrm{P}} 4.3, J_{2.3 \mathrm{~S}} 3.0,3-\mathrm{H}_{S}\right), 2.35(1 \mathrm{H}$, br dd, $\left.J_{2.3 R} 7.3, J_{3 R .4} 0.5,3-\mathrm{H}_{R}\right), 3.78$ and 3.88 [3 H each, $2 \mathrm{~d}, J_{\text {POMe }}$ $\left.10.8, \mathrm{P}(\mathrm{OMe})_{2}\right], 4.02\left(1 \mathrm{H}\right.$, ddd, $\left.J_{6 \mathrm{ax} . \mathrm{P}} 33.4, J_{6 \mathrm{ax} .6 \mathrm{eq}} 12.8,6-\mathrm{H}_{\mathrm{ax}}\right)$, $4.14\left(1 \mathrm{H}\right.$, br t, $\left.J_{6 \text { eq.P }} 13.4,6-\mathrm{H}_{\mathrm{eq}}\right), 5.08\left(1 \mathrm{H}\right.$, br t, $\left.J_{4 . \mathrm{P}} 7.3,4-\mathrm{H}\right)$, $5.30\left(1 \mathrm{H}\right.$, br s, $\left.J_{1.2} 0.5,1-\mathrm{H}\right)$ and $5.37(1 \mathrm{H}$, br dd, $2-\mathrm{H})$; NOEDS experiment [observed NOEs (\%) by irradiation of $6-\mathrm{H}_{\mathrm{ax}}$]: $5-\mathrm{H}$ $14,3-\mathrm{H}_{R} 5.2,2-\mathrm{H}_{11} \delta_{\mathrm{P}} 28.2 ; m / z 280\left(\mathrm{M}^{+}, 4.4 \%\right.$), 238 (99), 221 (4.6), 209 (72), 192 (15), 179 (32), 163 (36), 137 (86), and 110 (100).
(5RS)-3,5-Dideoxy-5-dimethoxyphosphinoyl- α, β-D-erythrohexofuranose 14.-Conc. sulfuric acid $\left(0.20 \mathrm{~cm}^{3}\right)$ was added to a solution of compound $8(860 \mathrm{mg}, 2.90 \mathrm{mmol})$ in acetic anhydride $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 4 h , diluted with CHCl_{3}, and washed successively with cold aq. NaHCO_{3} and water. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure to give 1,2,6-tri- O acetyl derivative $\mathbf{1 2}(1.08 \mathrm{~g})$ as a syrup.

To a cold solution of the above compound 12 in abs. MeOH $\left(10 \mathrm{~cm}^{3}\right)$ was added a 25% methanolic solution of $\mathrm{NaOMe}(0.40$ $\mathrm{cm}^{3}, 1.7 \mathrm{mmol}$), and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h before being neutralized with Amberlite IR-120 (H^{+}) ionexchange resin. The resin was filtered off and washed with MeOH . The filtrate was evaporated under reduced pressure to give the hexofuranose $14(675 \mathrm{mg}, 91 \%)$ as a syrup; $R_{\mathrm{f}} 0.55$ (Solvent D); $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 2.00-2.35\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right.$ and $\left.5-\mathrm{H}\right)$, 3.25-3.60 ($3 \mathrm{H}, \mathrm{m}, 1-, 2-$, and $6-\mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$-exchangeable), 3.78 $\left[6 \mathrm{H}, \mathrm{d}, J_{\mathrm{POMe}} 11.0, \mathrm{P}(\mathrm{OMe})_{2}\right], 3.90-4.85(4 \mathrm{H}, \mathrm{m}, 2-, 4-\mathrm{H}$, and $\left.6-\mathrm{H}_{2}\right)$ and $5.28(1 \mathrm{H}$, br s, $1-\mathrm{H})$.

Methyl 2,4-Dideoxy-4-dimethoxyphosphinoyl- α-D-erythropentopyranoside 16a. the β-Anomer 16b, the x-L-threo-Pentopyranoside 17a, the β-Anomer 17b. Methyl 2,4-Dideoxy-4-dimethoxyphosphinoyl-3-O-methyl- α-D-erythro-pentopyrano-
side 18a. the β-Anomer 18b. the α-L-threo-Pentopyranoside 19a and the β-Anomer 19b.-Sodium periodate $(750 \mathrm{mg}, 3.51$ $\mathrm{mmol})$ was added to a solution of triol $14(675 \mathrm{mg}, 2.63 \mathrm{mmol})$ in water $\left(5.0 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. The solution was then stirred at $25^{\circ} \mathrm{C}$ for 4 h and triturated with ethanol $\left(50 \mathrm{~cm}^{3}\right)$. The precipitate was filtered off, and the filtrate was evaporated under reduced pressure. The residue was extracted with CHCl_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure to give ($4 R S$)-2,4-dideoxy-4-dimethoxyphosphinoyl-3-O-formylα, β-D-glycero-pentopyranoses 15 as a syrup: $R_{\mathrm{f}} 0.63$ (Solvent D); $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.80-2.50\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right.$ and $\left.4-\mathrm{H}\right), 3.32(1 \mathrm{H}$, br s, $\mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$-exchangeable), 3.74 and 3.76 [3 H each, $2 \times \mathrm{d}$, $\left.J_{\text {POMe }} 10.8, \mathrm{P}(\mathrm{OMe})_{2}\right], 3.70-4.30\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}\right.$ and $\left.5-\mathrm{H}_{2}\right)$, $4.75-5.25(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, and $8.08(1 \mathrm{H}$, br s, 3-OCHO).

A solution of formate 15 and Amberlite IR-120 $\left(\mathrm{H}^{+}\right)\left(7 \mathrm{~cm}^{3}\right)$ in abs. methanol ($15 \mathrm{~cm}^{3}$) was refluxed for 8 h . The mixture was evaporated under reduced pressure to give a pale yellow syrup, which was separated by column chromatography with a gradient eluent of $\mathrm{CHCl}_{3} \longrightarrow(19: 1) \mathrm{CHCl}_{3}-\mathrm{MeOH}$ into four fractions, $A-D$.

Fraction A [$R_{\mathrm{f}} 0.40$ (Solvent C$\left.)\right]$ gave a mixture $(110 \mathrm{mg})$ of the 3-O-methyl-D-erythro-pentopyranosides 18a, b and the 3-O-methyl-L-threo-pentopyranosides 19a, b as a syrup (see later).
 pentopyranoside 16 a as needles $(98.2 \mathrm{mg}, 16 \%$ from 14), m.p. $106-107{ }^{\circ} \mathrm{C}$ (from AcOEt-hexane) [Found: C, $40.1 ; \mathrm{H}, 7.3 \%$; $(\mathrm{M}+1)^{+}, 241.0832 . \mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}_{6} \mathrm{P}$ requires $\mathrm{C}, 40.00 ; \mathrm{H}, 7.13 \%$; $(\mathbf{M}+1), 241.0841] ; \delta_{\mathbf{H}} 1.82\left(1 \mathrm{H}, \mathrm{dt}, J_{2 \mathrm{ax}, 2 \mathrm{eq}} 14.5, J_{1,2 \mathrm{ax}}=\right.$ $\left.J_{2 \mathrm{ax}, 3}=3.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.99\left(1 \mathrm{H}\right.$, dddd, $J_{2 \mathrm{eq}, \mathrm{P}} 6.4, J_{2 \mathrm{eq} .3} 3.0, J_{1.2 \mathrm{eq}}$ $\left.1.4,2-\mathrm{H}_{\mathrm{eq}}\right), 2.32\left(1 \mathrm{H}\right.$, dddd, $J_{4 . \mathrm{P}} 21.7, J_{4.5 \mathrm{sax}} 12.0, J_{4.5 \mathrm{eq}} 4.6, J_{3.4}$ $2.3,4-\mathrm{H}), 3.37(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 3.70(1 \mathrm{H}, \mathrm{br} s, \mathrm{HO}), 3.73(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}_{\mathrm{eq}}$), 3.74, 3.75 [3 H each, $2 \times \mathrm{d}, J_{\text {POMe }} 10.8$ and 11.0 , $\left.\mathrm{P}(\mathrm{OMe})_{2}\right], 4.10\left(1 \mathrm{H}, \mathrm{td}, J_{5 \mathrm{ax}, \mathrm{P}} 11.7,5-\mathrm{H}_{\mathrm{ax}}\right), 4.31\left(1 \mathrm{H}, \mathrm{dq}, J_{3, \mathrm{P}}\right.$ $\left.6.6, J_{1,3} 2.0,3-\mathrm{H}\right)$ and $4.76(1 \mathrm{H}, \mathrm{dt}, 1-\mathrm{H}) ; \delta_{\mathrm{C}} 35.48\left({ }^{3} J_{2, \mathrm{P}} 11.4\right.$, $\mathrm{C}-2), 40.18$ ($\left.{ }^{1} J_{4 . \mathrm{P}} 142.0, \mathrm{C}-4\right), 52.46\left({ }^{2} J_{\mathrm{C}, \mathrm{P}} 7.0\right.$, MeOP), 52.84 ($\left.{ }^{2} J_{\mathrm{C}, \mathrm{P}} 6.5, \mathrm{MeOP}\right), 53.77\left({ }^{2} J_{5, \mathrm{P}} 3.9, \mathrm{C}-5\right), 55.50(1-\mathrm{OMe}), 62.95$ (${ }^{2} J_{3, \mathrm{P}} 6.7, \mathrm{C}-3$) and $98.19(\mathrm{C}-1) ; \delta_{\mathrm{P}} 28.0 ; m / z 241\left(\mathrm{M}^{+}+1\right.$, 0.2%), 225 (0.4), 208 (24), 191 (40), 180 (11), 154 (38), 149 (30), 137 (100), and 109 (32)

Fraction C $\left[R_{\mathrm{f}} 0.29\right.$ (Solvent C)] gave a syrup (121 mg) which consisted of the L-threo-pentopyranosides 17 a (15% from 14) and $\mathbf{1 7 b}(3.8 \%)$, the relative amounts being determined from the integral ratio of their $1-\mathrm{H}$ and $1-\mathrm{OMe}$ signals [Found: $(\mathbf{M}+1)^{+}, 241.0848 . \mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{P}$ requires $\left.(\mathrm{M}+1), 241.0841\right] ;$ δ_{H} for 17a $1.58\left(1 \mathrm{H}\right.$, ddd, $J_{2 \mathrm{ax} .2 \mathrm{eq}} 13.3, J_{2 \mathrm{ax} .3} 10.9, J_{1.2 \mathrm{ax}} 3.6$, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 2.13\left(1 \mathrm{H}\right.$, dddd, $J_{4 . \mathrm{P}} 16.1, J_{3.4} 10.7, J_{4.5 \mathrm{ax}} 9.5, J_{4.5 \mathrm{eq}} 7.5$, $4-\mathrm{H}), 2.14\left(1 \mathrm{H}, \mathrm{dtd}, J_{2 \mathrm{eq}, \mathrm{P}} 5.9, J_{2 \mathrm{eq}, 3} 4.9, J_{1,2 \mathrm{eq}} 1.5,2-\mathrm{H}_{\mathrm{eq}}\right), 3.31$ ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}$), $3.70-3.73\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 3.77$ and $3.79[3 \mathrm{H}$ each, $2 \times \mathrm{d}, J_{\text {POMe }} 10.9, \mathrm{P}(\mathrm{OMe})_{2}$], $3.93(1 \mathrm{H}$, br s, HO$), 4.21$ $\left(1 \mathrm{H}, \mathrm{tdd}, J_{3 . \mathrm{P}} 8.2,3-\mathrm{H}\right)$ and $4.80\left(1 \mathrm{H}, \mathrm{dt}, J_{1.5 \mathrm{eq}} 2.2,1-\mathrm{H}\right) ; \delta_{\mathrm{C}}$ for 17a $37.84\left({ }^{3} J_{2 . \mathrm{P}} 13.3, \mathrm{C}-2\right), 42.57\left({ }^{1} J_{4 . \mathrm{P}} 136.3, \mathrm{C}-4\right), 52.67$
(${ }^{2} J_{\mathrm{C}, \mathrm{P}} 8.2, \mathrm{MeOP}$), 52.80 (${ }^{2} J_{\mathrm{C}, \mathrm{P}} 7.7, \mathrm{MeOP}$), 54.89 ($1-\mathrm{OMe}$), $56.58\left({ }^{2} J_{5, \mathrm{P}} \sim 0, \mathrm{C}-5\right), 62.49\left({ }^{2} J_{3, \mathrm{P}} 6.3, \mathrm{C}-3\right)$ and $99.98(\mathrm{C}-1)$; δ_{P} for 17a $28.8 ; \delta_{\mathrm{H}}$ for $17 \mathrm{~b} 1.55\left(1 \mathrm{H}\right.$, ddd, $J_{2 \text { eq. } 2 \mathrm{ax}} 13.1$, $\left.J_{2 \mathrm{ax.} 3} 9.2, J_{1.2 \mathrm{ax}} 7.9,2-\mathrm{H}_{\mathrm{ax}}\right), 2.13\left(1 \mathrm{H}, \mathrm{dtd}, J_{4 . \mathrm{P}} 16.5, J_{3.4} 9.5\right.$, $\left.J_{4.5 \mathrm{ax}} 8.9, J_{4.5 \mathrm{eq}} 4.3,4-\mathrm{H}\right), 2.28\left(1 \mathrm{H}, \mathrm{dtd}, J_{2 \text { eq. } 3} 4.5, J_{2 \text { eq. } \mathrm{P}} 4.3\right.$, $J_{1.2 \mathrm{eq}} 2.4,2-\mathrm{H}_{\mathrm{eq}}$), $3.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HO}), 3.45(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe})$, $3.52\left(1 \mathrm{H}\right.$, ddd, $\left.J_{\text {Seq. Sax }} 12.3, J_{5_{\mathrm{ax}, \mathrm{P}}} 4.4,5-\mathrm{H}_{\mathrm{ax}}\right), 3.77$ and 3.79 $\left[3 \mathrm{H}\right.$, each, $\left.2 \times \mathrm{d}, J_{\text {Роме }} 11.0,10.8, \mathrm{P}(\mathrm{OMe})_{2}\right], 4.05(1 \mathrm{H}, \mathrm{tdd}$, $\left.J_{3 . \mathrm{P}} 7.0,3-\mathrm{H}\right), 4.12\left(1 \mathrm{H}, \mathrm{ddd}, J_{5 \mathrm{eq} . \mathrm{P}} 10.6,5-\mathrm{H}_{\mathrm{eq}}\right)$ and $4.40(1 \mathrm{H}$, dd, 1-H); δ_{P} for 17b 28.9; $m / z 241\left(\mathrm{M}^{+}+1,0.1 \%\right)$, 208 (13), 191 (26), 180 (13), 154 (54), 137 (100) and 109 (29).

Fraction $\mathrm{D}\left[R_{\mathrm{f}} 0.24\right.$ (Solvent C)] gave the β-D-erythropentopyranoside $\mathbf{1 6 b}$ as needles ($184 \mathrm{mg}, 29 \%$ from 14), m.p. $101-102{ }^{\circ} \mathrm{C}$ (from AcOEt-hexane) [Found: C, 40.2; H, 7.3%; $(\mathrm{M}+1)^{+}, 241.0837 . \mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}_{6} \mathrm{P}$ requires $\mathrm{C}, 40.00 ; \mathrm{H}, 7.13 \%$; $(\mathrm{M}+1), 241.0841] ; \delta_{\mathrm{H}} 1.61\left(1 \mathrm{H}\right.$, ddd, $J_{2 \mathrm{ax} .2 \mathrm{eq}} 13.5, J_{1.2 \mathrm{ax}}$ $\left.8.2, J_{2 \mathrm{ax}, 3} 2.8,2-\mathrm{H}_{\mathrm{ax}}\right), 2.04\left(1 \mathrm{H}, \mathrm{dtd}, J_{2 \mathrm{eq} .3}=J_{2 \mathrm{eq}, \mathrm{P}}=4.8, J_{1.2 \mathrm{eq}}\right.$ $2.5,2-\mathrm{H}_{\mathrm{eq}}$), 2.31 (1 H , dddd, $J_{4 . \mathrm{P}} 21.0, J_{4,5 \mathrm{sax}} 10.0, J_{4.5 \mathrm{eq}} 4.4, J_{3.4}$ $2.8,4-\mathrm{H}), 3.44(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 3.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HO}), 3.76[6 \mathrm{H}$, d, $\left.J_{\text {POMe }} 10.9, \mathrm{P}(\mathrm{OMe})_{2}\right], 3.96\left(1 \mathrm{H}\right.$, dddd, $J_{\text {sax. } 5 \text { eq }} 11.7, J_{5 \text { eq. } \mathrm{P}}$ $\left.7.9, J_{3.5 \mathrm{eq}} 0.8,5-\mathrm{H}_{\mathrm{eq}}\right), 4.02\left(1 \mathrm{H}\right.$, ddd, $\left.J_{\mathrm{sax}, \mathrm{P}} 3.5,5-\mathrm{H}_{\mathrm{ax}}\right), 4.43$ $\left(1 \mathrm{H}\right.$, ddtd, $\left.J_{3 . \mathrm{P}} 11.6,3-\mathrm{H}\right)$ and $4.74\left(1 \mathrm{H}\right.$, dd, 1-H); $\delta_{\mathrm{c}} 37.74$ $\left({ }^{3} J_{2 . \mathrm{P}} 10.4, \mathrm{C}-2\right), 39.67$ ($\left.{ }^{1} J_{4 . \mathrm{P}} 137.2, \mathrm{C}-4\right), 52.71 \quad\left({ }^{2} J_{\mathrm{C} . \mathrm{P}} 7.0\right.$, $\mathrm{MeOP}), 52.89$ ($\left.{ }^{2} J_{\mathrm{C} . \mathrm{P}} 6.2, \mathrm{MeOP}\right), 56.22$ (1-OMe), $59.47\left({ }^{2} J_{5 . \mathrm{P}}\right.$ 3.1, C-5), $64.15\left({ }^{2} J_{3 . \mathrm{P}} 5.4, \mathrm{C}-3\right)$ and $99.10(\mathrm{C}-1) ; \delta_{\mathrm{P}} 29.3 ; m / z$ $241\left(\mathrm{M}^{+}+1,0.5 \%\right), 208(17), 191$ (17), 154 (30), 149 (41), 137 (100) and $109(30)$.

Fraction A (110 mg) was rechromatographed with a gradient eluent of $\mathrm{AcOEt} \longrightarrow(19: 1) \mathrm{AcOEt}-\mathrm{EtOH}$ into three fractions, $\mathrm{A}_{1}-\mathrm{A}_{3}$.

Fraction $\mathbf{A}_{1}\left[R_{\mathrm{f}} 0.42\right.$ (Solvent B)] gave the α-L-threo-pentopyranoside 19a as a syrup ($41.9 \mathrm{mg}, 6.3 \%$ from 14) [Found: C, 42.3; H, $7.75 \% ;(\mathrm{M}+1)^{+}$, 255.0983. $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{P}$ requires C , 42.52; $\mathrm{H}, 7.53 \% ;(\mathrm{M}+1), 255.0998] ; \delta_{\mathrm{H}} 1.47(1 \mathrm{H}$, ddd, $\left.J_{2 \mathrm{ax} .2 \mathrm{eq}} 12.7, J_{2 \mathrm{ax}, 3} 10.8, J_{1,2 \mathrm{ax}} 3.4,2-\mathrm{H}_{\mathrm{ax}}\right), 2.18\left(1 \mathrm{H}, \mathrm{dtd}, J_{4, \mathrm{P}}\right.$ $\left.16.6, J_{4.5 \mathrm{ax}} 11.0, J_{3.4} 10.1, J_{4.5 \mathrm{eq}} 5.9,4-\mathrm{H}\right), 2.26\left(1 \mathrm{H}, \mathrm{ddd}, J_{2 \text { eq. } \mathrm{P}}\right.$ $5.8, J_{2 \mathrm{eq} .3} 4.5, J_{1.2 \mathrm{eq}} 2.0,2-\mathrm{H}_{\text {eq }}$) $, 3.31(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 3.38(3 \mathrm{H}$, $\mathrm{s}, 3-\mathrm{OMe}$), 3.73 and 3.75 [3 H each, $2 \times \mathrm{d}, J_{\text {Pome }} 11.0$ and 10.8 , $\left.\mathrm{P}(\mathrm{OMe})_{2}\right], 3.80-3.84\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 3.87\left(1 \mathrm{H}, \mathrm{tdd}, J_{3 . \mathrm{P}} 8.1\right.$, $3-\mathrm{H})$ and $4.80\left(1 \mathrm{H}, \mathrm{dt}, J_{1.5 \mathrm{eq}} 2.3,1-\mathrm{H}\right)$; $\delta_{\mathrm{C}} 34.97\left({ }^{3} J_{2 . \mathrm{P}} 11.5\right.$, C-2), 41.31 ($\left.{ }^{1} J_{4 . \mathrm{P}} 139.4, \mathrm{C}-4\right), 51.92\left({ }^{2} J_{\mathrm{C} . \mathrm{P}} 6.9, \mathrm{MeOP}\right), 52.83$ (${ }^{2} J_{\mathrm{C}, \mathrm{P}} 6.2, \mathrm{MeOP}$), 54.78 and 55.99 ($1-$ and $3-\mathrm{OMe}$), $57.90\left({ }^{2} J_{\mathrm{S}, \mathrm{P}}\right.$ $\sim 0, \mathrm{C}-5), 72.20\left({ }^{2} J_{3, \mathrm{p}} 6.4, \mathrm{C}-3\right)$ and $98.80(\mathrm{C}-1) ; \delta_{\mathrm{p}} 28.5$; FAB $m / z 255\left(\mathrm{M}^{+}+1,25 \%\right), 237$ (223), 191 (100), 185 (19) and 93 (32).

Fraction A_{2} [$R_{\mathrm{f}} 0.36$ (Solvent B)] gave a syrup (43.6 mg) which consisted of the β-anomers $18 b$ (4.8% from 14) and 19b (1.7%), the relative amounts being determined from the integral ratio of their 1-H and 1-, 3-OMe signals; δ_{H} for $\mathbf{1 8 b} 1.53(1 \mathrm{H}$, ddd, $\left.J_{2 \mathrm{ax}, 2 \mathrm{eq}} 13.7, J_{1.2 \mathrm{ax}} 7.9, J_{2 \mathrm{ax}, 3} 3.2,2-\mathrm{H}_{\mathrm{ax}}\right), 2.24(1 \mathrm{H}, \mathrm{dtd}$, $\left.J_{2 \mathrm{eq} .3}=J_{2 \mathrm{eq} . \mathrm{P}}=4.9, J_{1.2 \mathrm{eq}} 2.7,2-\mathrm{H}_{\mathrm{eq}}\right), 2.35\left(1 \mathrm{H}\right.$, dddd, $J_{4 . \mathrm{P}}$ $\left.20.6, J_{4.5 \mathrm{sax}} 10.0, J_{4.5 \mathrm{eq}} 4.2, J_{3.4} 3.0,4-\mathrm{H}\right), 3.43$ and $3.44(3 \mathrm{H}$, each, $2 \times \mathrm{s}, 1-$ and $3-\mathrm{OMe}$), 3.72 and 3.75 [3 H each, $2 \times \mathrm{d}, J_{\text {POMe }}$ $\left.10.9, \mathrm{P}(\mathrm{OMe})_{2}\right], 3.90-3.99\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.5-\mathrm{H}_{2}\right)$ and $4.64(1 \mathrm{H}$, dd, 1-H); δ_{P} for 18 b 28.5 ; δ_{H} for $19 \mathrm{~b} 1.39\left(1 \mathrm{H}\right.$, ddd, $J_{2 \mathrm{ax}, 2 \mathrm{eq}} 12.9$, $\left.J_{2 \mathrm{ax} .3} 10.1, J_{\mathrm{I} .2 \mathrm{ax}} 8.5,2-\mathrm{H}_{\mathrm{ax}}\right), 2.13\left(1 \mathrm{H}, \mathrm{dtd}, J_{4 . \mathrm{P}} 18.0, J_{4.5 \mathrm{ax}} 10.3\right.$, $\left.J_{3.4} 9.5, J_{4.5 \mathrm{eq}} 4.5,4-\mathrm{H}\right), 2.37\left(1 \mathrm{H}, \mathrm{dtd}, J_{2 \mathrm{eq} .3}=J_{2 \mathrm{eq} . \mathrm{P}}=4.8\right.$, $J_{1.2 \mathrm{eq}} 2.6,2-\mathrm{H}_{\text {eq }}$), 3.46 and 3.47 (3 H each, $2 \times \mathrm{s}, 1$ - and $3-\mathrm{OMe}$), $3.52\left(1 \mathrm{H}, \mathrm{ddd}, J_{5 \mathrm{ax} .5 \mathrm{sq}} 12.3, J_{5 \mathrm{ax} . \mathrm{P}} 3.8,5-\mathrm{H}_{\mathrm{ax}}\right), 3.68\left(1 \mathrm{H}, \mathrm{tdd}, J_{3 . \mathrm{P}}\right.$ $8.5,3-\mathrm{H}$), 3.73 and 3.75 [3 H each, $2 \times \mathrm{d}$, $J_{\text {POMe }} 11.0$ and 10.8 , $\left.\mathrm{P}(\mathrm{OMe})_{2}\right], 4.17\left(1 \mathrm{H}, \mathrm{ddd}, J_{\text {seq. }} 7.6,5-\mathrm{H}_{\mathrm{eq}}\right)$ and $4.30(1 \mathrm{H}, \mathrm{dd}, 1-$ H); δ_{P} for 19b 28.7 .

Fraction $\mathrm{A}_{3}\left[R_{\mathrm{f}} 0.27\right.$ (Solvent B)] gave the pyranoside 18a as a syrup ($14.8 \mathrm{mg}, 2.2 \%$ from 14); $\delta_{\mathrm{H}} 1.68\left(1 \mathrm{H}, \mathrm{dt}, J_{2 \mathrm{ax} .2 \mathrm{eq}} 14.8\right.$, $\left.J_{1.2 \mathrm{ax}} 4.3, J_{\text {zax. } 3} 3.7,2-\mathrm{H}_{\mathrm{ax}}\right), 2.18\left(1 \mathrm{H}\right.$, dddd, $J_{2 \mathrm{eq} . \mathrm{P}} 5.8, J_{\text {eq. } 3} 3.6$, $\left.J_{1.2 \text { eq }} 2.0,2-\mathrm{H}_{\text {eq }}\right), 2.39\left(1 \mathrm{H}, \mathrm{ddt}, J_{4 . \mathrm{P}} 21.3, J_{4.5 \mathrm{sax}} 10.7, J_{4.5 \mathrm{eq}} 4.2\right.$, $J_{3.4} 3.1,4-\mathrm{H}$), 3.36 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}$), 3.42 ($3 \mathrm{H}, \mathrm{s}, 3$-OMe), 3.58 $\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5 \text { eq. } .5 \mathrm{ax}} 11.3, J_{5 \text { eq. } \mathrm{P}} 5.9,5-\mathrm{H}_{\text {eq }}\right), 3.71$ and $3.75[3 \mathrm{H}$
each, $2 \times \mathrm{d}, J_{\text {Pome }} 10.9$ and $10.8, \mathrm{P}(\mathrm{OMe})_{2}$], $3.84\left(1 \mathrm{H}, \mathrm{dqd}, J_{3 . \mathrm{P}}\right.$ $\left.9.1, J_{1.3} 1.0,3-\mathrm{H}\right), 4.16\left(1 \mathrm{H}, \mathrm{td}, J_{5_{\text {ax. }}} 2.4,5-\mathrm{H}_{\mathrm{ax}}\right)$ and $4.62(1 \mathrm{H}$, ddd, 1-H); $\delta_{\mathrm{P}} 28.4$.

1,3,5-Tri-O-acetyl-2,4-dideoxy-4-[(R and S)-methoxyphos-phonoyl]-x, β-D-erythro-pentofuranose 22a-d.-To a stirred solution of compounds $\mathbf{1 6 a}, \mathbf{b}(200 \mathrm{mg}, 0.822 \mathrm{mmol})$ in dry benzene ($3 \mathrm{~cm}^{3}$) at $5{ }^{\circ} \mathrm{C}$ was added a solution of SDMA (3.4 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ in toluene; $0.90 \mathrm{~cm}^{3}, 3.1 \mathrm{mmol}$) in dry benzene ($1 \mathrm{~cm}^{3}$) in small portions under argon. The mixture was stirred at this temperature for 30 min . Water $\left(0.5 \mathrm{~cm}^{3}\right)$ was added and the mixture was stirred for a further 30 min . The precipitate was centrifuged and, after removal of the supernatant, extracted with several portions of benzene. The organic layers were combined, and evaporated under reduced pressure to give the 4-phosphino derivative $\mathbf{2 0}$ as a syrup: $R_{\mathrm{f}} 0.50$ (Solvent C).
The above syrup was immediately treated at $90^{\circ} \mathrm{C}$ with propan-2-ol ($1.5 \mathrm{~cm}^{3}$) and $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid ($3 \mathrm{~cm}^{3}$) for 1 h under argon. After cooling, the reactants were neutralized with Amberlite IRA-45. The resin was filtered off and washed with water, and the filtrate was evaporated under reduced pressure. The residue was dissolved in water $\left(1.5 \mathrm{~cm}^{3}\right)$, treated, at $25^{\circ} \mathrm{C}$, with 30% aq. hydrogen peroxide $\left(0.3 \mathrm{~cm}^{3}\right)$ for 10 h , and concentrated under reduced pressure to give crude 2,4-dideoxy-4-hydroxyphosphonoyl-x, β-D-erythro-pentofuranoses 21 as a syrup: $R_{\mathrm{f}} 0.15-0.10$ (Solvent D).
This product was acetylated with acetic anhydride $\left(0.5 \mathrm{~cm}^{3}\right)$ in dry pyridine $\left(1.5 \mathrm{~cm}^{3}\right)$ for 1 d at $25^{\circ} \mathrm{C}$ and the mixture was then concentrated under reduced pressure. The residue was passed through a column of Amberlite IR-120 ($15 \mathrm{~cm}^{3}$) and the eluent was concentrated under reduced pressure. The residue was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ and methylated with ethereal diazomethane, at $0^{\circ} \mathrm{C}$. The solvent was evaporated off under reduced pressure and the residue was separated by column chromatography with a gradient eluent of (3:1) AcOEt-hexane $\longrightarrow \mathrm{AcOEt}$, into two fractions, A and B .
Fraction A [$R_{\mathrm{f}} 0.45$ (Solvent A)] gave a syrup (26.4 mg) which consisted of the 4-[(R)-methoxyphosphonoyl]- β-D-erythro-pentofuranose $\mathbf{2 2 a}(6.1 \%$ from 16) and the corresponding x-isomer 22b (3.9%), the relative amounts being determined from the integral ratio of their 1-H and MeOP signals [Found: $\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CO}\right)$, 280.0713. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{7} \mathrm{P}$ requires ($\mathrm{M}-42$), 280.0712]; ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data, see Table 1; $\mathrm{m} / \mathrm{z} 280$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CO}, 2.9 \%\right.$), 238 (100), 178 (10) and 150 (22).

Fraction B [$R_{\mathrm{f}} 0.42$ (Solvent A)] gave a syrup (33.6 mg) which consisted of the $4-[(\mathrm{S})$-methoxyphosphonoyl $]-\beta$-isomer 22c (7.5% from 16) and its corresponding x-isomer 22d (5.2%) [Found: C, 45.1; H, 6.2\%; $(\mathrm{M}+1)^{+}$, 323.0893. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{8} \mathrm{P}$ requires C, 44.73; H, 5.94\%; $(\mathrm{M}+1), 323.0896] ;{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data, see Table $1 ; m / z 323\left(\mathrm{M}^{+}+1,2.5 \%\right), 280(17), 238$ (100), 220 (22), 209 (30), 178 (39), 150 (56) and 123 (25).

1,3,5-Tri-O-acetyl-2,4-dideoxy-4-[(R and S)-methoxyphos-phonoyl]-x. β-L-threo-pentofuranoses $\mathbf{2 5 a}$-d.-The procedures similar to those for the preparation of compounds 22 from substrates 16 were employed. Thus, compounds $17 a, b(111 \mathrm{mg}$, 0.456 mmol) were converted into the diastereoisomeric pentofuranoses 25 via intermediates 23 and 24 . The crude product 25 was separated by column chromatography into three fractions, $\mathrm{A}-\mathrm{C}$.

Fraction $\mathrm{A}\left[R_{\mathrm{f}} 0.39\right.$ (Solvent A$\left.)\right]$ gave the $4-[(\mathrm{R})$ - methoxy-phosphonoyl]-x-L-threo-pentofuranose $25 a(16.6 \mathrm{mg}, 11 \%$ from 17) as a syrup [Found: $\mathrm{C}, 45.0 ; \mathrm{H}, 6.15 \%$ ($\left.\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CO}\right)$, 280.0711. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{8} \mathrm{P}$ requires $\mathrm{C}, 44.73$; $\mathrm{H}, 5.94 \%$; ($\mathrm{M}-42$), 280.0712]; ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data, see Table 1; $m /=280$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CO}, 6.3 \%\right), 238(100), 220(18), 178(15)$ and $150(25)$. Fraction B [$R_{\mathrm{f}} 0.36$ (Solvent A)] gave a syrup (10.5 mg) which consisted of the 4-[(S)-methoxyphosphonoyl]-x-isomer

25c (4.8% from 17) and its β-isomer 25d (2.4%); ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data, see Table 1.

Fraction C [$R_{\mathrm{f}} 0.31$ (Solvent A)] gave the $4-[(\mathrm{R})$-methoxy-phosphonoyl]- β-isomer $\mathbf{2 5 b}$ ($8.0 \mathrm{mg}, 5.4 \%$ from 17) as a syrup [Found: $(\mathbf{M}+1)^{+}, 323.0890 . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{8} \mathrm{P}$ requires $(\mathrm{M}+1)$, 323.0896]; ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data, see Table $1 ; m / z 323$ $\left(\mathbf{M}^{+}+1,0.2 \%\right), 280(5.3), 238$ (100), 220 (8.5), 209 (10), 178 (16) and 150 (24).

References

1 For reviews, see H. Yamamoto and T. Hanaya, Studies in Natural Products Chemistry, ed. T. I. Atta-ur-Rahman. Elsevier, Amsterdam, 1990, vol. 6, pp. 351 384; H. Yamamoto and S. Inokawa, Adv. Carbohydr. Chem. Biochem., 1984, 42, 135.
2 T. Richter, P. Luger, T. Hanaya and H. Yamamoto, Carbohydr. Res., 1989, 193, 9.
3 H. Yamamoto, T. Hanaya, H. Kawamoto, S. Inokawa, M. Yamashita, M.-A. Armour and T. T. Nakashima, J. Org. Chem., 1985, 50, 3516.

4 H. Yamamoto, K. Yamamoto, S. Inokawa, M. Yamashita, M.-A. Armour and T. T. Nakashima, J. Org. Chem., 1983, 48. 435.
5 T. Hanaya and H. Yamamoto, Bull. Chem. Soc. Jpn., 1989, 62, 2320.
6 P. Luger, E. Müller, H. Yamamoto and S. Inokawa, Carbohy $d r$. Res., 1985, 145, 25.
7 H. Yamamoto, Y. Nakamura, S. Inokawa, M. Yamashita, M.-A. Armour and T. T. Nakashima, J. Org. Chem., 1984, 49, 1364.
8 U. G. Nayak and R. L. Whistler, Juslus Liebigs Ann. Chem., 1970. 741, 131; Y.-L. Fu and M. Bobek, J. Org. Chem., 1976, 41, 3831.
9 R. J. Nash, E. A. Bell, G. W. J. Fleet, R. H. Jones and J. M. Williams, J. Chem. Soc., Chem. Commun., 1985, 738.

10 Some of the results have been reported as a preliminary communication: T. Hanaya, A. Noguchi and H. Yamamoto, Carbohydr. Res., 1991, 209, C9.
11 J. M. J. Tronchet, K. D. Pallie and F. Barbalet-Rey, J. Carbohydr. Chem., 1985, 4, 29.

Paper $1 / 03315 \mathrm{H}$
Received 2nd July 1991
Accepted 17th September 1991

[^0]

ICOS 92 CISO 92

Ninth International Conference on Organic Synthesis Montréal, Canada

Hosted by Université du Québec à Montréal June 28-July 2, 1992

Main Theme: Stereocontrol in Organic Synthesis

TOPICS wIIL INCIUDE: Strategies and Reagents for Stereocontrol in Synthesis Advonces in Asymmetric Synthesis
Biomolecules in Organic Synthesis
Lecturers: The following have agreed to present plenary lectures:

P. Deslongchamps (CaNADA)	D. Evans (U.S.A.)
L. Ghosez (BELGUM)	T. Hayashi (JJPAN)
J.F. Normant (FRANCE)	G. Pottenden (U.K.)
P.G. Schulz (U.S.A.)	D. Seebach (SWITZERLAND)
K.B. Sharpless (U.S.A.)	G. Stork (U.S.A.)

Local organizing	Chairman:	Robert N. Young
commitree:	Co-choirmen:	Sandu Golddstein
		Andrée Lefebvie
		Yvon Pépin
		Jean-Cloude Richer

For more imformation and to receive a second circular please contact:

[^0]: (c) Copyright 1992 by the Royal Society of Chemistry

